These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Bone morphogenetic protein 7 attenuates epithelial-mesenchymal transition induced by silica. Author: Yang G, Zhu Z, Wang Y, Gao A, Niu P, Chen L, Tian L. Journal: Hum Exp Toxicol; 2016 Jan; 35(1):69-77. PubMed ID: 25733726. Abstract: The epithelial-mesenchymal transition (EMT) is a critical process in the pulmonary fibrosis. It has been reported that bone morphogenetic protein 7 (BMP-7) was able to reverse EMT in proximal tubular cells. Therefore, we test the hypothesis that EMT contributes to silica-induced pulmonary fibrosis and BMP-7 inhibits EMT in silica-induced pulmonary fibrosis. Progressive silica-induced pulmonary fibrosis in the rat was used as a model of silicosis. Epithelial and mesenchymal markers were measured from rat fibrotic lungs. Then the effects of BMP-7 on the EMT were further confirmed in A549 cells. There are increases of vimentin as a mesenchymal marker and decreases of E-cadherin as an epithelial marker in the silica-exposed rat lungs, which is in agreement with the A549 cells data. However, BMP-7 treatment significantly reduced expression of vimentin in the rat pulmonary fibrosis model and in A549 cells. In conclusion, EMT contributes to silica-induced pulmonary fibrosis. Meanwhile, the treatment of BMP-7 can inhibit silica-induced EMT in vitro and in vivo.[Abstract] [Full Text] [Related] [New Search]