These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Caloranaerobacter ferrireducens sp. nov., an anaerobic, thermophilic, iron (III)-reducing bacterium isolated from deep-sea hydrothermal sulfide deposits. Author: Zeng X, Zhang Z, Li X, Jebbar M, Alain K, Shao Z. Journal: Int J Syst Evol Microbiol; 2015 Jun; 65(Pt 6):1714-1718. PubMed ID: 25736413. Abstract: A thermophilic, anaerobic, iron-reducing bacterium (strain DY22619T) was isolated from a sulfide sample collected from an East Pacific Ocean hydrothermal field at a depth of 2901 m. Cells were Gram-stain-negative, motile rods (2-10 µm in length, 0.5 µm in width) with multiple peritrichous flagella. The strain grew at 40-70 °C inclusive (optimum 60 °C), at pH 4.5-8.5 inclusive (optimum pH 7.0) and with sea salts concentrations of 1-10 % (w/v) (optimum 3 % sea salts) and NaCl concentrations of 1.5-5.0 % (w/v) (optimum 2.5 % NaCl). Under optimal growth conditions, the generation time was around 55 min. The isolate was an obligate chemoorganoheterotroph, utilizing complex organic compounds, amino acids, carbohydrates and organic acids including peptone, tryptone, beef extract, yeast extract, alanine, glutamate, methionine, threonine, fructose, mannose, galactose, glucose, palatinose, rhamnose, turanose, gentiobiose, xylose, sorbose, pyruvate, tartaric acid, α-ketobutyric acid, α-ketovaleric acid, galacturonic acid and glucosaminic acid. Strain DY22619T was strictly anaerobic and facultatively dependent on various forms of Fe(III) as an electron acceptor: insoluble forms and soluble forms. It did not reduce sulfite, sulfate, thiosulfate or nitrate. The genomic DNA G+C content was 29.0 mol%. Phylogenetic 16S rRNA gene sequence analyses revealed that the closest relative of strain DY22619T was Caloranaerobacter azorensis MV1087T, sharing 97.41 % 16S rRNA gene sequence similarity. On the basis of physiological distinctness and phylogenetic distance, the isolate is considered to represent a novel species of the genus Caloranaerobacter, for which the name Caloranaerobacterhttp://dx.doi.org/10.1601/nm.4081ferrireducens sp. nov. is proposed. The type strain is DY22619T ( = JCM 19467T = DSM 27799T = MCCC1A06455T).[Abstract] [Full Text] [Related] [New Search]