These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Bortezomib enhances the therapeutic efficacy of dasatinib by promoting c-KIT internalization-induced apoptosis in gastrointestinal stromal tumor cells. Author: Dong Y, Liang C, Zhang B, Ma J, He X, Chen S, Zhang X, Chen W. Journal: Cancer Lett; 2015 May 28; 361(1):137-46. PubMed ID: 25737303. Abstract: Dasatinib-based therapy is often used as a second-line therapeutic strategy for imatinib-resistance gastrointestinal stromal tumors (GISTs); however, acquired aberrant activation of dasatinib target proteins, such as c-KIT and PDGFRβ, attenuates the therapeutic efficiency of dasatinib. Combination therapy which inhibits the activation of dasatinib target proteins may enhance the cytotoxicity of dasatinib in GISTs. Bortezomib, a proteasome inhibitor, significantly inhibited cell viability and promoted apoptosis of dasatinib-treated GIST-T1 cells, whereas GIST-T1 cells showed little dasatinib cytotoxicity when treated with dasatinib alone, as the upregulation of c-KIT caused by dasatinib itself interfered with the inhibition of c-KIT and PDGFRβ phosphorylation by dasatinib. Bortezomib induced internalization and degradation of c-KIT by binding c-KIT to Cbl, an E3 ubiquitin-protein ligase, and the subsequent release of Apaf-1, which was originally bound to the c-KIT-Hsp90β-Apaf-1 complex, induced primary apoptosis in GIST-T1 cells. Combined treatment with bortezomib plus dasatinib caused cell cycle arrest in the G1 phase through inactivation of PDGFRβ and promoted bortezomib-induced apoptosis in GIST-T1 cells. Our data suggest that combination therapy exerts better efficiency for eradicating GIST cells and may be a promising strategy for the future treatment of GISTs.[Abstract] [Full Text] [Related] [New Search]