These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Identification of a key catalytic intermediate demonstrates that nitrogenase is activated by the reversible exchange of N₂ for H₂.
    Author: Lukoyanov D, Yang ZY, Khadka N, Dean DR, Seefeldt LC, Hoffman BM.
    Journal: J Am Chem Soc; 2015 Mar 18; 137(10):3610-5. PubMed ID: 25741750.
    Abstract:
    Freeze-quenching nitrogenase during turnover with N2 traps an S = ½ intermediate that was shown by ENDOR and EPR spectroscopy to contain N2 or a reduction product bound to the active-site molybdenum-iron cofactor (FeMo-co). To identify this intermediate (termed here EG), we turned to a quench-cryoannealing relaxation protocol. The trapped state is allowed to relax to the resting E0 state in frozen medium at a temperature below the melting temperature; relaxation is monitored by periodically cooling the sample to cryogenic temperature for EPR analysis. During -50 °C cryoannealing of EG prepared under turnover conditions in which the concentrations of N2 and H2 ([H2], [N2]) are systematically and independently varied, the rate of decay of EG is accelerated by increasing [H2] and slowed by increasing [N2] in the frozen reaction mixture; correspondingly, the accumulation of EG is greater with low [H2] and/or high [N2]. The influence of these diatomics identifies EG as the key catalytic intermediate formed by reductive elimination of H2 with concomitant N2 binding, a state in which FeMo-co binds the components of diazene (an N-N moiety, perhaps N2 and two [e(-)/H(+)] or diazene itself). This identification combines with an earlier study to demonstrate that nitrogenase is activated for N2 binding and reduction through the thermodynamically and kinetically reversible reductive-elimination/oxidative-addition exchange of N2 and H2, with an implied limiting stoichiometry of eight electrons/protons for the reduction of N2 to two NH3.
    [Abstract] [Full Text] [Related] [New Search]