These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Synthesis of Z-scheme g-C3N4-Ti(3+)/TiO2 material: an efficient visible light photoelectrocatalyst for degradation of phenol. Author: Liao W, Murugananthan M, Zhang Y. Journal: Phys Chem Chem Phys; 2015 Apr 14; 17(14):8877-84. PubMed ID: 25744448. Abstract: In this study, a photocatalytic material g-C3N4-Ti(3+)/TiO2 nanotube arrays was prepared by a facile and viable approach involving a heat treatment followed by an electrochemical reduction step, and it was characterized using instrumental techniques such as X-ray diffraction pattern, Fourier transform-infrared spectroscopy, X-ray photoelectron spectroscopy, scanning electron microscopy and UV-vis diffuse reflectance spectra. The photocatalytic efficiency of the as-prepared samples towards treating aqueous solution contaminated with phenol was systematically evaluated by a photoelectrocatalytic method and found to be highly dependent on the content of the g-C3N4. At the optimal content of g-C3N4, the apparent photocurrent density of g-C3N4-Ti(3+)/TiO2 was four times higher than that of the pristine TiO2 under visible-light illumination. The enhanced photoelectrocatalytic behavior observed for g-C3N4-Ti(3+)/TiO2 was ascribed to a cumulative impact of both g-C3N4 and Ti(3+), which enhances the photoresponsive behavior of the material into the visible region and facilitates the effective charge separation of photoinduced charge carriers.[Abstract] [Full Text] [Related] [New Search]