These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Biosynthesis and production of glycosylated flavonoids in Escherichia coli: current state and perspectives.
    Author: Kim BG, Yang SM, Kim SY, Cha MN, Ahn JH.
    Journal: Appl Microbiol Biotechnol; 2015 Apr; 99(7):2979-88. PubMed ID: 25750049.
    Abstract:
    Flavonoids are plant secondary metabolites containing several hydroxyl groups that are targets for modification reactions such as methylation and glycosylation. In plants, flavonoids are present as glycones. Although glucose is the most common sugar attached to flavonoids, arabinose, galactose, glucuronic acid, rhamnose, and xylose are also linked to flavonoids. Depending on the kind and the position of the attached sugar, flavonoid glycones show different biological properties. Flavonoid-O-glycosides are synthesized by uridine diphosphate-dependent glycosyltransferases (UGTs), which use nucleotide sugar as a sugar donor and a diverse compound as a sugar acceptor. Recently, diverse flavonoid-O-glycosides have been synthesized in Escherichia coli by introducing UGTs from plants and bacteria and modifying endogenous pathways. The nucleotide sugar biosynthesis pathway in E. coli has been engineered to provide the proper nucleotide sugar for flavonoid-O-glycoside biosynthesis. In this review, we will discuss recent advances in flavonoid-O-glycoside biosynthesis using engineered E. coli.
    [Abstract] [Full Text] [Related] [New Search]