These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: [Changes in soil organic carbon and soil microbial functional diversity of Carya cathayensis plantations under intensive managements].
    Author: Wu JS, Qian JF, Tong ZP, Huang JQ, Zhao KL.
    Journal: Ying Yong Sheng Tai Xue Bao; 2014 Sep; 25(9):2486-92. PubMed ID: 25757296.
    Abstract:
    The change characteristics of soil organic carbon and microbial function diversity in Chinese hickory Carya cathayensis stands with different intensive-management durations (5, 10, 15 and 20 years) were studied. The results showed that soil total organic carbon (TOC), microbial biomass carbon (MBC), water-soluble organic carbon (WSOC) decreased significantly, while the stability of soil C pool increased significantly after the conversion from evergreen and deciduous broadleaf forest to intensively-managed forest (IMF). TOC, MBC and WSOC in the hickory forest soil decreased by 28.4%, 34.1% and 53.3% with 5-year intensive management, and by 38.6%, 48.9% and 64.1% with 20-year intensive management, respectively. The proportions of carboxyl C, phenolic C and aromatic C in the hickory forest soil all increased significantly, and the aromaticity of soil organic C increased by 23.0%. Soil microbial functional diversity decreased greatly af- ter intensive management of Chinese hickory forest. Significant differences in average well color development (AWCD) were found between the 0- and 5-year treatments and the 10-, 15- and 20- year treatments. The microbial diversity indexes (H) and evenness indexes (E) in the 0- and 5-year treatments were much greater than in the 10- and 20-year treatments. Correlation analysis showed that there were significant correlations among soil TOC, WSOC, MBC, AWCD, H and E.
    [Abstract] [Full Text] [Related] [New Search]