These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Protonated rhodosemiquinone at the Q(B) binding site of the M265IT mutant reaction center of photosynthetic bacterium Rhodobacter sphaeroides.
    Author: Maróti Á, Wraight CA, Maróti P.
    Journal: Biochemistry; 2015 Mar 31; 54(12):2095-103. PubMed ID: 25760888.
    Abstract:
    The second electron transfer from primary ubiquinone Q(A) to secondary ubiquinone Q(B) in the reaction center (RC) from Rhodobacter sphaeroides involves a protonated Q(B)(-) intermediate state whose low pK(a) makes direct observation impossible. Here, we replaced the native ubiquinone with low-potential rhodoquinone at the Q(B) binding site of the M265IT mutant RC. Because the in situ midpoint redox potential of Q(A) of this mutant was lowered approximately the same extent (≈100 mV) as that of Q(B) upon exchange of ubiquinone with low-potential rhodoquinone, the inter-quinone (Q(A) → Q(B)) electron transfer became energetically favorable. After subsequent saturating flash excitations, a period of two damped oscillations of the protonated rhodosemiquinone was observed. The Q(B)H(•) was identified by (1) the characteristic band at 420 nm of the absorption spectrum after the second flash and (2) weaker damping of the oscillation at 420 nm (due to the neutral form) than at 460 nm (attributed to the anionic form). The appearance of the neutral semiquinone was restricted to the acidic pH range, indicating a functional pK(a) of <5.5, slightly higher than that of the native ubisemiquinone (pK(a) < 4.5) at pH 7. The analysis of the pH and temperature dependencies of the rates of the second electron transfer supports the concept of the pH-dependent pK(a) of the semiquinone at the Q(B) binding site. The local electrostatic potential is severely modified by the strongly interacting neighboring acidic cluster, and the pK(a) of the semiquinone is in the middle of the pH range of the complex titration. The kinetic and thermodynamic data are discussed according to the proton-activated electron transfer mechanism combined with the pH-dependent functional pK(a) of the semiquinone at the Q(B) site of the RC.
    [Abstract] [Full Text] [Related] [New Search]