These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Injury history, sex, and performance on the functional movement screen and Y balance test.
    Author: Chimera NJ, Smith CA, Warren M.
    Journal: J Athl Train; 2015 May; 50(5):475-85. PubMed ID: 25761134.
    Abstract:
    CONTEXT: Research is limited regarding the effects of injury or surgery history and sex on the Functional Movement Screen (FMS) and Y Balance Test (YBT). OBJECTIVE: To determine if injury or surgery history or sex affected results on the FMS and YBT. DESIGN: Cross-sectional study. SETTING: Athletic training facilities. PATIENTS OR OTHER PARTICIPANTS: A total of 200 National Collegiate Athletic Association Division I female (n = 92; age = 20.0 ± 1.4 years, body mass index = 22.8 ± 3.1 kg/m(2)) and male (n = 108; age = 20.0 ± 1.5 years, body mass index = 27.0 ± 4.6 kg/m(2)) athletes were screened; 170 completed the FMS, and 190 completed the YBT. INTERVENTION(S): A self-reported questionnaire identified injury or surgery history and sex. The FMS assessed movement during the patterns of deep squat, hurdle step, in-line lunge, shoulder mobility, impingement-clearing test, straight-leg raise, trunk stability push-up, press-up clearing test, rotary stability, and posterior-rocking clearing test. The YBT assessed balance while participants reached in anterior, posteromedial, and posterolateral directions. MAIN OUTCOME MEASURE(S): The FMS composite score (CS; range, 0-21) and movement pattern score (range, 0-3), the YBT CS (% lower extremity length), and YBT anterior, posteromedial, and posterolateral asymmetry (difference between limbs in centimeters). Independent-samples t tests established differences in mean FMS CS, YBT CS, and YBT asymmetry. The Mann-Whitney U test identified differences in FMS movement patterns. RESULTS: We found lower overall FMS CSs for the following injuries or surgeries: hip (injured = 12.7 ± 3.1, uninjured = 14.4 ± 2.3; P = .005), elbow (injured = 12.1 ± 2.8, uninjured = 14.3 ± 2.4; P = .02), and hand (injured = 12.3 ± 2.9, uninjured = 14.3 ± 2.3; P = .006) injuries and shoulder surgery (surgery = 12.0 ± 1.0, no surgery = 14.3 ± 2.4; P < .001). We observed worse FMS movement pattern performance for knee surgery (rotary stability: P = .03), hip injury (deep squat and hurdle: P < .042 for both), hip surgery (hurdle and lunge: P < .01 for both), shoulder injury (shoulder and hand injury: P < .02 for both), and shoulder surgery (shoulder: P < .02). We found better FMS movement pattern performance for trunk/back injury (deep squat: P = .02) and ankle injury (lunge: P = .01). Female athletes performed worse in FMS movement patterns for trunk (P < .001) and rotary (P = .01) stability but better in the lunge (P = .008), shoulder mobility (P < .001), and straight-leg raise (P < .001). Anterior asymmetry was greater for male athletes (P = .02). CONCLUSIONS: Injury history and sex affected FMS and YBT performance. Researchers should consider adjusting for confounders.
    [Abstract] [Full Text] [Related] [New Search]