These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: [The heterogeneity of the excitatory synaptic inputs in the spinal motor neurons of the frog Rana ridibunda].
    Author: Kalinina NI, Kurchavyĭ GG, Shupliakov OV, Veselkin NP, Antonov SM.
    Journal: Zh Evol Biokhim Fiziol; 1989; 25(6):755-62. PubMed ID: 2576171.
    Abstract:
    The synaptic responses induced in motoneurones by the stimulations of the dorsal root (DR), single afferent fibres and reticular formation (RF) were intracellularly recorded in the isolated frog spinal cord. It was shown that argiopine (the selective blocker of glutamate receptors of non-NMDA type) in concentrations ranging from 3.10(-7) to 1.10(-5) M effectively suppressed the di- and polysynaptic, but not the monosynaptic components of EPSP's induced by DR stimulation. The initial reaction to argiopine consisted of the increase of this monosynaptic component of EPSP. In the same concentrations range, argiopine reduced both mono- and polysynaptic EPSP, evoked by RF stimulation. 2-amino-phosphonovaleric acid (1.10(-4) M) did not affect, whereas the kinurenate (1--2.10(-3) M) completely blocked the amplitude of all kinds of synaptic responses. The various effects of argiopine on the responses induced by microstimulation of presynaptic nerve terminals were observed. The data obtained speak in favour of heterogeneity of monosynaptic excitatory inputs in the motoneurones of frog spinal cord. Being the glutamatergic by nature, the inputs differ in the properties of postsynaptic receptors. All of these receptors concerning to non NMDA-type can be divided to argiopine-sensitive and argiopine-resistant. The first seem to be involved in the monosynaptic connections of RF and the second--in those of primary afferents with motoneurones.
    [Abstract] [Full Text] [Related] [New Search]