These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: The PHD-finger module of the Arabidopsis thaliana defense regulator EDM2 can recognize triply modified histone H3 peptides.
    Author: Tsuchiya T, Eulgem T.
    Journal: Plant Signal Behav; 2014; 9(7):e29202. PubMed ID: 25763495.
    Abstract:
    Recently we reported that the Arabidopsis thaliana PHD-finger protein EDM2 (enhanced downy mildew 2) impacts disease resistance by affecting levels of di-methylated lysine 9 of histone H3 (H3K9me2) at an alternative polyadenylation site in the immune receptor gene RPP7. EDM2-dependent modulation of this post-translational histone modification (PHM) shifts the balance between full-length RPP7 transcripts and prematurely polyadenylated transcripts, which do not encode the RPP7 protein. Our previous work genetically linked, for the first time, PHMs to alternative polyadenylation and established EDM2 as a critical component mediating PHM-dependent polyadenylation control. However, how EDM2 is recruited to its genomic target sites and how it affects H3K9me2 levels is unknown. Here we show the PHD-finger module of EDM2 to recognize histone H3 bearing certain combinations of 3 distinct PHMs. Our results suggest that targeting of EDM2 to specific genomic regions is mediated by the histone-binding selectivity of its PHD-finger domain.
    [Abstract] [Full Text] [Related] [New Search]