These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Relative contributions of Dehalobacter and zerovalent iron in the degradation of chlorinated methanes. Author: Lee M, Wells E, Wong YK, Koenig J, Adrian L, Richnow HH, Manefield M. Journal: Environ Sci Technol; 2015 Apr 07; 49(7):4481-9. PubMed ID: 25764054. Abstract: The role of bacteria and zerovalent iron (Fe(0)) in the degradation of chlorinated solvents in subsurface environments is of interest to researchers and remediation practitioners alike. Fe(0) used in reactive iron barriers for groundwater remediation positively interacted with enrichment cultures containing Dehalobacter strains in the transformation of halogenated methanes. Chloroform transformation and dichloromethane formation was up to 8-fold faster and 14 times higher, respectively, when a Dehalobacter-containing enrichment culture was combined with Fe(0) compared with Fe(0) alone. The dichloromethane-fermenting culture transformed dichloromethane up to three times faster with Fe(0) compared to without. Compound-specific isotope analysis was employed to compare abiotic and biotic chloroform and dichloromethane degradation. The isotope enrichment factor for the abiotic chloroform/Fe(0) reaction was large at -29.4 ± 2.1‰, while that for chloroform respiration by Dehalobacter was minimal at -4.3 ± 0.45‰. The combined abiotic/biotic dechlorination was -8.3 ± 0.7‰, confirming the predominance of biotic dechlorination. The enrichment factor for dichloromethane fermentation was -15.5 ± 1.5‰; however, in the presence of Fe(0) the factor increased to -23.5 ± 2.1‰, suggesting multiple mechanisms were contributing to dichloromethane degradation. Together the results show that chlorinated methane-metabolizing organisms introduced into reactive iron barriers can have a significant impact on trichloromethane and dichloromethane degradation and that compound-specific isotope analysis can be employed to distinguish between the biotic and abiotic reactions involved.[Abstract] [Full Text] [Related] [New Search]