These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Ammonia-limited conditions cause of Thaumarchaeal dominance in volcanic grassland soil. Author: Daebeler A, Bodelier PL, Hefting MM, Laanbroek HJ. Journal: FEMS Microbiol Ecol; 2015 Mar; 91(3):. PubMed ID: 25764462. Abstract: The first step of nitrification is carried out by ammonia-oxidizing bacteria (AOB) and archaea (AOA). It is largely unknown, by which mechanisms these microbes are capable of coexistence and how their respective contribution to ammonia oxidation may differ with varying soil characteristics. To determine how different levels of ammonium availability influence the extent of archaeal and bacterial contributions to ammonia oxidation, microcosm incubations with controlled ammonium levels were conducted. Net nitrification was monitored and ammonia-oxidizer communities were quantified. Additionally, the nitrification inhibitor allylthiourea (ATU) was applied to discriminate between archaeal and bacterial contributions to soil ammonia oxidation. Thaumarchaeota, which were the only ammonia oxidizers detectable at the start of the incubation, grew in all microcosms, but AOB later became detectable in ammonium amended microcosms. Low and high additions of ammonium increasingly stimulated AOB growth, while AOA were only stimulated by the low addition. Treatment with ATU had no effect on net nitrification and sizes of ammonia-oxidizing communities suggesting that the effective concentration of ATU to discriminate between archaeal and bacterial ammonia oxidation is not the same in different soils. Our results support the niche-differentiating potential of ammonium concentration for AOA and AOB, and we conclude that ammonium limitation can be a major reason for absence of detectable AOB in soil.[Abstract] [Full Text] [Related] [New Search]