These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Comparison of experimental respiratory tularemia in three nonhuman primate species. Author: Glynn AR, Alves DA, Frick O, Erwin-Cohen R, Porter A, Norris S, Waag D, Nalca A. Journal: Comp Immunol Microbiol Infect Dis; 2015 Apr; 39():13-24. PubMed ID: 25766142. Abstract: Tularemia is a zoonotic disease caused by Francisella tularensis, which is transmitted to humans most commonly by contact with infected animals, tick bites, or inhalation of aerosolized bacteria. F. tularensis is highly infectious via the aerosol route; inhalation of as few as 10-50 organisms can cause pneumonic tularemia. Left untreated, the pneumonic form has more than >30% case-fatality rate but with early antibiotic intervention can be reduced to 3%. This study compared tularemia disease progression across three species of nonhuman primates [African green monkey (AGM), cynomolgus macaque (CM), and rhesus macaque (RM)] following aerosolized F. tularensis Schu S4 exposure. Groups of the animals exposed to various challenge doses were observed for clinical signs of infection and blood samples were analyzed to characterize the disease pathogenesis. Whereas the AGMs and CMs succumbed to disease following challenge doses of 40 and 32 colony forming units (CFU), respectively, the RM lethal dose was 276,667 CFU. Following all challenge doses that caused disease, the NHPs experienced weight loss, bacteremia, fever as early as 4 days post exposure, and tissue burden. Necrotizing-to-pyogranulomatous lesions were observed most commonly in the lung, lymph nodes, spleen, and bone marrow. Overall, the CM model consistently manifested pathological responses similar to those resulting from inhalation of F. tularensis in humans and thereby most closely emulates human tularemia disease. The RM model displayed a higher tolerance to infection and survived exposures of up to 15,593 CFU of aerosolized F. tularensis.[Abstract] [Full Text] [Related] [New Search]