These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Development of next generation of therapeutic IFN-α2b via genetic code expansion. Author: Zhang B, Xu H, Chen J, Zheng Y, Wu Y, Si L, Wu L, Zhang C, Xia G, Zhang L, Zhou D. Journal: Acta Biomater; 2015 Jun; 19():100-11. PubMed ID: 25769229. Abstract: With the aim to overcome the heterogeneity associated with marketed IFN-α2b PEGylates and optimize the size of the PEG moiety and the site of PEGylation, we develop a viable and facile platform through genetic code expansion for PEGylation of IFN-α2b at any chosen site(s). This approach includes site-specific incorporation of an azide-bearing amino acid into IFN-α2b followed by orthogonal and stoichiometric conjugation of a variety of PEGs via a copper-free click reaction. By this approach, only the chosen site(s) within IFN-α2b is consistently PEGylated under mild conditions, leading to a single and homogenous conjugate. Furthermore, it makes the structure-activity relationship study of IFN-α2b possible by which the opposite effects of PEGylation on the biological and pharmacological properties are optimized. Upon re-examination of the PEGylated IFN-α2b isomers carrying different sizes of PEG at different sites, we find mono-PEGylates at H34, A74 and E107 with a 20-, 10- and 10-kDa PEG moiety, respectively, have both higher biological activities and better PK profiles than others. These might represent the direction for development of the next generation of PEGylated IFN-α2b.[Abstract] [Full Text] [Related] [New Search]