These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Analyses of black fungi by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS): species-level identification of clinical isolates of Exophiala dermatitidis. Author: Kondori N, Erhard M, Welinder-Olsson C, Groenewald M, Verkley G, Moore ER. Journal: FEMS Microbiol Lett; 2015 Jan; 362(1):1-6. PubMed ID: 25790495. Abstract: Conventional mycological identifications based on the recognition of morphological characteristics can be problematic. A relatively new methodology applicable for the identification of microorganisms is based on the exploitation of taxon- specific mass patterns recorded from abundant cell proteins directly from whole-cell preparations, using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). This study reports the application of MALDI-TOF MS for the differentiation and identifications of black yeasts, isolated from the respiratory tracts of patients with cystic fibrosis (CF). Initial phenotypic and DNA sequence-based analyses identified these isolates to be Exophiala dermatitidis. The type strains of E. dermatitidis (CBS 207.35(T)) and other species of Exophiala were included in the MALDI-TOF MS analyses to establish the references for comparing the mass spectra of the clinical isolates of Exophiala. MALDI-TOF MS analyses exhibited extremely close relationships among the clinical isolates and with the spectra generated from the type strain of E. dermatitidis. The relationships observed between the E. dermatitidis strains from the MALDI-TOF MS profiling analyses were supported by DNA sequence-based analyses of the rRNA ITS1 and ITS2 regions. These data demonstrated the applicability of MALDI-TOF MS as a reliable, rapid and cost-effective method for the identification of isolates of E. dermatitidis and other clinically relevant fungi and yeasts that typically are difficult to identify by conventional methods.[Abstract] [Full Text] [Related] [New Search]