These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: The relationship between channel size and the number of C9 molecules in the C5b-9 complex.
    Author: Ramm LE, Whitlow MB, Mayer MM.
    Journal: J Immunol; 1985 Apr; 134(4):2594-9. PubMed ID: 2579147.
    Abstract:
    We have recently shown by dose-response analyses with resealed erythrocyte ghosts that the channel formed by complement is a monomer of C5b-9 of the composition C5b61C71C81C9n, in which n = 1 for channels permitting passage of sucrose (0.9 nm molecular diameter) and n = 2 for channels allowing transit of inulin (3 nm molecular diameter) (1). We have now continued these experiments and expanded them by including ribonuclease A (molecular diameter, 3.8 nm) as a marker to assess whether additional C9 molecules enlarge the functional C5b-9 channel. Our results show that formation of C5b-9 channels displays one-hit characteristics with respect to C5b6 when tested by transmembrane passage of inulin or ribonuclease A. By contrast, analysis of dose-response curves of C9 indicate that n = 2-3 for channels allowing transit of inulin and n = 4 for channels allowing transit of ribonuclease A. We have also performed sieving experiments with ghosts carrying C5b-7 and containing two small markers, inositol and sucrose. Dose-response curves for C8 were performed in the presence of excess C9 to ensure conversion of all C5b-8 to C5b-9 channels. The results indicate that small channels (approximately 0.8 nm effective diameter) are not formed at high C9 multiplicity, thus confirming the results obtained with the larger markers, i.e., increase of C9 input leads to formation of larger channels.
    [Abstract] [Full Text] [Related] [New Search]