These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Covalent labeling of functional states of the acetylcholine receptor. Effects of antagonists on the receptor conformation. Author: Fahr A, Lauffer L, Schmidt D, Heyn MP, Hucho F. Journal: Eur J Biochem; 1985 Mar 15; 147(3):483-7. PubMed ID: 2579809. Abstract: Photoaffinity labeling of membrane-bound nicotinic acetylcholine receptor from Torpedo marmorata electric tissue with the ion-channel blocker [3H]TPMP+ reveals various functional states of the receptor protein if labeling is performed with ms time resolution. In the resting and in the activated state most of the label is incorporated into the alpha-polypeptide chains of the receptor complex. When equilibrated with agonists and antagonists, predominantly the delta-polypeptide chain (and to a lesser extent the beta-chain) reacts with the photolabel. Reactivity of the delta-chain increases after exposure to cholinergic effectors with a half-life slower than the kinetics of receptor activation or rapid desensitization. Agonists and antagonists stimulate photolabelling of the delta-chain with different kinetics. For acetylcholine, carbamoylcholine and suberyldicholine the half-life of the reactivity increases is 400 - 500 ms; for the antagonists hexamethonium, d-tubocurarine and flaxedil it is about 10 s. The latter slow kinetics are also observed when the receptor is preequilibrated with agonists or antagonists prior to mixing with [3H]TPMP+ and starting the photoreaction. We conclude that time-resolved photoaffinity labeling can convalently mark protein structures involved in receptor functions. Of special interest is the observation that antagonists also induce a conformational change in the receptor protein.[Abstract] [Full Text] [Related] [New Search]