These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: The effects of apigenin on lipopolysaccharide-induced depressive-like behavior in mice. Author: Li R, Zhao D, Qu R, Fu Q, Ma S. Journal: Neurosci Lett; 2015 May 06; 594():17-22. PubMed ID: 25800110. Abstract: Increasing evidence shows that inflammation may contribute to the pathophysiology of depression. Apigenin, one type of natural flavone, has a number of biological actions including anti-inflammatory effects. Although it has potential antidepressant activity in a chronic mild stress model, the mechanisms of antidepressant effect for apigenin remain unclear. Here, we examined the effects of apigenin on lipopolysaccharide (LPS)-induced depressive-like behavior in male mice. A single administration of LPS (0.5mg/kg, i.p.) increased the immobility time in the tail suspension test (TST) and reduced sucrose preference without changing spontaneous locomotor activity in open field test (OFT). Pre-treatment with apigenin (25, 50mg/kg, i.p.) or fluoxetine (positive control drug, 20mg/kg, i.p.) once daily for 7 consecutive days prevented the abnormal behavior induced by LPS. Apigenin or fluoxetine also effectively attenuated LPS-induced production of pro-inflammatory cytokines IL-1β (interleukin-1β) and TNF-α (tumor necrosis factor-α). Moreover, apigenin or fluoxetine significantly suppressed the inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) expression at both the mRNA and protein level via the modulation of nuclear factor-κB (NF-κB) activation in the prefrontal cortex. Additionally, apigenin (50mg/kg, i.p.) or fluoxetine (20mg/kg, i.p.) effectively reversed the depressive-like behavior induced by TNF-α (0.1fg/site, i.c.v.) without altering the locomotor activity. These results demonstrate that apigenin exhibits antidepressant-like effects in LPS treated mice, partially due to its anti-inflammatory properties.[Abstract] [Full Text] [Related] [New Search]