These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Improved DNA microarray detection sensitivity through immobilization of preformed in solution streptavidin/biotinylated oligonucleotide conjugates.
    Author: Mavrogiannopoulou E, Petrou PS, Koukouvinos G, Yannoukakos D, Siafaka-Kapadai A, Fornal K, Awsiuk K, Budkowski A, Kakabakos SE.
    Journal: Colloids Surf B Biointerfaces; 2015 Apr 01; 128():464-472. PubMed ID: 25805150.
    Abstract:
    A novel immobilization approach involving binding of preformed streptavidin/biotinylated oligonucleotide conjugates onto surfaces coated with biotinylated bovine serum albumin is presented. Microarrays prepared according to the proposed method were compared, in terms of detection sensitivity and specificity, with other immobilization schemes employing coupling of biotinylated oligonucleotides onto directly adsorbed surface streptavidin, or sequential coupling of streptavidin and biotinylated oligonucleotides onto a layer of adsorbed biotinylated bovine serum albumin. A comparison was performed employing biotinylated oligonucleotides corresponding to wild- and mutant-type sequences of seven single point mutations of the BRCA1 gene. With respect to the other immobilization protocols, the proposed oligonucleotide immobilization approach offered the highest hybridization signals (at least 5 times higher) and permitted more elaborative washings, thus providing considerably higher discrimination between complimentary and non-complementary DNA sequences for all mutations tested. In addition, the hybridization kinetics were significantly enhanced compared to two other immobilization protocols, permitting PCR sample analysis in less than 40 min. Thus, the proposed oligonucleotide immobilization approach offered improved detection sensitivity and discrimination ability along with considerably reduced analysis time, and it is expected to find wide application in DNA mutation detection.
    [Abstract] [Full Text] [Related] [New Search]