These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: The heterotrimeric G-protein β subunit, AGB1, plays multiple roles in the Arabidopsis salinity response. Author: Yu Y, Assmann SM. Journal: Plant Cell Environ; 2015 Oct; 38(10):2143-56. PubMed ID: 25808946. Abstract: Salinity stress includes both osmotic and ionic toxicity. Sodium homeostasis is influenced by Na(+) uptake and extrusion, vacuolar Na(+) compartmentation and root to shoot Na(+) translocation via transpiration. The knockout mutant of the Arabidopsis heterotrimeric G-protein Gβ subunit, agb1, is hypersensitive to salt, exhibiting a leaf bleaching phenotype. We show that AGB1 is mainly involved in the ionic toxicity component of salinity stress and plays roles in multiple processes of Na(+) homeostasis. agb1 mutants accumulate more Na(+) and less K(+) in both shoots and roots of hydroponically grown plants, as measured by inductively coupled plasma atomic emission spectrometry. agb1 plants have higher root to shoot translocation rates of radiolabelled (24) Na(+) under transpiring conditions, as a result of larger stomatal apertures and increased stomatal conductance. (24) Na(+) tracer experiments also show that (24) Na(+) uptake rates by excised roots of agb1 and wild type are initially equal, but that agb1 has higher net Na(+) uptake at 90 min, implicating possible involvement of AGB1 in the regulation of Na(+) efflux. Calcium alleviates the salt hypersensitivity of agb1 by reducing Na(+) accumulation to below the toxicity threshold. Our results provide new insights into the regulatory pathways underlying plant responses to salinity stress, an important agricultural problem.[Abstract] [Full Text] [Related] [New Search]