These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Genetic regulation of the immune response to hepatitis B surface antigen (HBsAg). VI. T cell fine specificity. Author: Milich DR, Peterson DL, Leroux-Roels GG, Lerner RA, Chisari FV. Journal: J Immunol; 1985 Jun; 134(6):4203-11. PubMed ID: 2580909. Abstract: In the companion paper it was demonstrated that the T cell proliferative response to HBsAg was controlled by I region genes as was previously shown for in vivo anti-HBs production. In this paper, the structural requirements for T cell recognition of HBsAg were compared with B cell (antibody) recognition of HBsAg. Secondly, we attempted to map determinants on HBsAg required for activation of HBsAg-primed T cells, and we examined the influence of I region genotype on the observed T cell antigenic fine specificity. The results of these studies indicate clear differences between T cell and B cell recognition of HBsAg. T cell activation required significantly less native structure as compared with antibody binding to HBsAg. Reduced and alkylated HBsAg, the subunit polypeptide P25, tryptic fragments of P25, and synthetic peptide analogues of HBsAg were all capable of eliciting a T cell proliferative response, whereas these "denatured" forms of the antigen bind anti-HBs marginally or not at all. Furthermore, the results suggest that T cell recognition sites on HBsAg do not necessarily overlap with B cell recognition sites. Examination of T cell fine specificity in a series of H-2 congenic strains, with the use of HBsAg, P25, tryptic fragments of P25, and synthetic peptides, revealed multiple T cell recognition sites on HBsAg, and the particular site(s) recognized is dependent on the H-2 genotype of the responding strain. Finally, preliminary results indicate that the specificity of human, HBsAg-primed T cells appear to be variable among individuals.[Abstract] [Full Text] [Related] [New Search]