These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Resveratrol analogue (E)-8-acetoxy-2-[2-(3,4-diacetoxyphenyl)ethenyl]-quinazoline induces G₂/M cell cycle arrest through the activation of ATM/ATR in human cervical carcinoma HeLa cells. Author: Kim JY, Choi HE, Lee HH, Shin JS, Shin DH, Choi JH, Lee YS, Lee KT. Journal: Oncol Rep; 2015 May; 33(5):2639-47. PubMed ID: 25812484. Abstract: Styrylquinazolines are synthetic analogues of resveratrol and have been suggested to cause anti-inflammatory activity by modulating prostaglandin E₂ (PGE₂) production. In the present study, we evaluated cytotoxic effects of various styrylquinazoline derivatives and found that (E)-8-acetoxy-2-[2-(3,4-diacetoxyphenyl)ethenyl]-quinazoline (8-ADEQ) most potently inhibited the proliferation of the human cervical carcinoma HeLa cells. Exploring the growth-inhibitory mechanisms of 8-ADEQ, we found that it causes a cell cycle arrest at the G₂/M phase by DNA flow cytometric analysis, which was accompanied by upregulation of cyclin B1 expression and cyclin-dependent protein kinase 1 (Cdk1) phosphorylation. In addition, we observed that 8-ADEQ causes phosphorylation of the cell division cycle 25C (Cdc25C) protein through the activation of checkpoint kinases 1 (Chk1) and Chk2, which in turn were activated via ataxia telangiectasia mutated (ATM)/ataxia telangiectasia-Rad3-related (ATR) kinases in response to the DNA damage. Furthermore, ATM/ATR inhibitor caffeine, p53- or ATM/ATR-specific siRNA significantly attenuated 8-ADEQ-induced G₂/M arrest. These results suggest that the 8-ADEQ inhibits the proliferation of human cervical cancer HeLa cells by DNA damage-mediated G₂/M cell cycle arrest. 8-ADEQ‑induced G₂/M arrest is mediated by the activation of both Chk1/2-Cdc25 and p53-p21CIP1/WAF1 via ATM/ATR pathway, and indicates that 8-ADEQ appears to have potential in the treatment of cervical cancer.[Abstract] [Full Text] [Related] [New Search]