These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Biodegradation of 1,4-dioxane: effects of enzyme inducers and trichloroethylene.
    Author: Hand S, Wang B, Chu KH.
    Journal: Sci Total Environ; 2015 Jul 01; 520():154-9. PubMed ID: 25813968.
    Abstract:
    1,4-Dioxane is a groundwater contaminant and probable human carcinogen. In this study, two well-studied degradative bacteria Mycobacterium vaccae JOB5 and Rhodococcus jostii RHA1 were examined for their 1,4-dioxane degradation ability in the presence and absence of its co-contaminant, trichloroethylene (TCE), under different oxygenase-expression conditions. These two strains were precultured with R2A broth (complex nutrient medium) before supplementation with propane or 1-butanol to induce the expression of different oxygenases. Both propane- and 1-butanol-induced JOB5 and RHA1 were able to degrade 1,4-dioxane, TCE, and mixtures of 1,4-dioxane/TCE. Complete degradation of 1,4-dioxane/TCE mixture was observed only in propane-induced strain JOB5. Inhibition was observed between 1,4-dioxane and TCE for all cells. Furthermore, product toxicity caused incomplete degradation of 1,4-dioxane by 1-butanol-induced JOB5. In general, the more TCE degraded, the greater extent of product toxicity cells experienced; however, susceptibility to product toxicity was found to be both strain- and inducer-dependent. The findings of this study provide fundamental basis for developing an effective in-situ remediation method for 1,4-dioxane-contaminated ground water and the first known study of 1,4-dioxane degradation by wild-type strain RHA1.
    [Abstract] [Full Text] [Related] [New Search]