These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: MicroRNA-124 inhibits cancer cell growth through PTB1/PKM1/PKM2 feedback cascade in colorectal cancer.
    Author: Taniguchi K, Sugito N, Kumazaki M, Shinohara H, Yamada N, Nakagawa Y, Ito Y, Otsuki Y, Uno B, Uchiyama K, Akao Y.
    Journal: Cancer Lett; 2015 Jul 10; 363(1):17-27. PubMed ID: 25818238.
    Abstract:
    Altered levels and functions of microRNAs (miRs) have been associated with carcinogenesis. In this study, we investigated the role of miR-124 in colorectal adenoma (CRA) and cancer (CRC). The expression levels of miR-124 were decreased in CRA (81.8%) and CRC (57.6%) in 55 clinical samples. The ectopic expression of miR-124 induced apoptosis and autophagy in colon cancer cells. Also, miR-124 targeted polypyrimidine tract-binding protein 1 (PTB1), which is a splicer of pyruvate kinase muscles 1 and 2 (PKM1 and PKM2) and induced the switching of PKM isoform expression from PKM2 to PKM1. Also, siR-PTB1 induced drastic apoptosis in colon cancer cells. Furthermore, we found that the ectopic expression of miR-124 enhanced oxidative stress and the miR-124/PTB1/PKM1/PKM2 axis constituted a feedback cascade. Finally, we showed that intratumor injection of miR-124 and siR-PTB1 induced a tumor-suppressive effect in xenografted mice. The axis was established by both in vitro and in vivo experiments to function in human colorectal cancer cells. These findings suggest that miR-124 acts as a tumor-suppressor and a modulator of energy metabolism through a PTB1/PKM1/PKM2 feedback cascade in human colorectal tumor cells.
    [Abstract] [Full Text] [Related] [New Search]