These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Dental Follicle Cells Participate in Tooth Eruption via the RUNX2-MiR-31-SATB2 Loop. Author: Ge J, Guo S, Fu Y, Zhou P, Zhang P, Du Y, Li M, Cheng J, Jiang H. Journal: J Dent Res; 2015 Jul; 94(7):936-44. PubMed ID: 25818585. Abstract: Cleidocranial dysplasia (CCD) is characterized by the runt-related transcription factor 2 (RUNX2) mutation, which results in delayed tooth eruption due to disturbed functions of dental follicle. Accumulating evidence has revealed a key regulatory circuit, including RUNX2, miR-31, and special AT-rich binding protein 2 (SATB2) acting in concert in mesenchymal stem cell homeostasis and functions. However, whether such a regulatory loop works in dental follicle cells (DFCs) remains unknown. Herein, we investigated the roles of RUNX2-miR-31-SATB2 in DFCs from patients with CCD (DFCs-CCD) to advance our understanding regarding physical tooth eruption. We identified a novel mutation on exon 5 (c.634T>G, p.T212P) in RUNX2 via exome sequencing in the CCD patient with typical clinical presentations. Compared with DFCs from healthy donors, DFCs-CCD displayed significantly lower osteogenic, osteoclast-inductive, and matrix-degrading capacities and had lower RUNX2 (a transcriptional inhibitor of miR-31), higher miR-31, and downregulated SATB2. Lower ratios of RANKL/OPG and RANKL/RANK, as well as decreased expression of matrix metalloproteinase 9 (MMP9) and matrix metalloproteinase 2 (MMP2), would lead to inactivation of osteoclasts and suppression of bone matrix remodeling in DFCs-CCD. Furthermore, the roles of the RUNX2-miR-31-SATB2 loop in DFCs-CCD were revealed by endogenous miR-31 knockdown, which resulted in increased SATB2 and RUNX2, as well as osteoclast-inductive and matrix degradation capacities. Conversely, SATB2, RUNX2, MMP9, MMP2, and osteoclast-inductive factors expression declined upon ectopic miR-31 overexpression in normal DFCs. Importantly, neonatal mice with in vivo siRUNX2 delivery exhibited less activated osteoclasts around dental follicles and delayed tooth eruption. Together, these results suggest that RUNX2 mutation/haploinsufficiency disturbs osteoclast-inductive signaling in DFCs, which may be responsible for delayed tooth eruption in CCD patients. Manipulation of the RUNX2-miR-31-SATB2 loop may be a potential way to facilitate tooth eruption in CCD patients.[Abstract] [Full Text] [Related] [New Search]