These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Low culture temperature inhibits myogenic differentiation through mitochondrial activity. Author: Shima A, Matsuda R. Journal: Zoolog Sci; 2015 Apr; 32(2):129-34. PubMed ID: 25826060. Abstract: A previous study by our group reported that mouse and human myoblasts fail to express myogenin and to fuse into multi-nucleate myotubes when cultured at low temperature, such as 30°C, but that this activity is rescued by adding IGF-I and vitamin C to the culture medium. In the present study, we examined mitochondrial activity as a target of the inhibitory effects of the low culture temperature. It has been suggested that mitochondria regulate myogenesis. By using a mouse myoblast cell line C2C12, we demonstrate that the expression of cytochrome c oxidase subunit I (COX I), which is encoded in mitochondrial genome, increases during myogenic differentiation at the normal culture temperature (38°C), but that this up-regulation is inhibited at 30°C. The mitochondrial membrane potential also decreased at 30°C compared to the culture at 38°C. However, IGF-I and vitamin C rescued both COX I expression and mitochondrial membrane potential at 30°C as promoting muscle differentiation. We also find that the rescue of mitochondrial activity by IGF-I and vitamin C at 30°C occurred after the myogenin expression, which suggests that myogenin regulates mitochondrial function during myogenesis. We suggest that our low temperature-culture system may be suitable for use in studying the detailed mechanism of myogenin-related phenomena during myogenesis.[Abstract] [Full Text] [Related] [New Search]