These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Postprandial glucagon-like peptide-1 secretion is increased during the progression of glucose intolerance and obesity in high-fat/high-sucrose diet-fed rats. Author: Nakajima S, Hira T, Hara H. Journal: Br J Nutr; 2015 May 14; 113(9):1477-88. PubMed ID: 25827219. Abstract: Glucagon-like peptide-1 (GLP-1) is secreted by distal enteroendocrine cells in response to luminal nutrients, and exerts insulinotropic and anorexigenic effects. Although GLP-1 secretory responses under established obese or diabetic conditions have been studied, it has not been investigated whether or how postprandial GLP-1 responses were affected during the progression of diet-induced obesity. In the present study, a meal tolerance test was performed every week in rats fed a high-fat and high-sucrose (HF/HS) diet to evaluate postprandial glycaemic, insulin and GLP-1 responses. In addition, gastric emptying was assessed by the acetaminophen method. After 8 weeks of HF/HS treatment, portal vein and intestinal mucosa were collected to examine GLP-1 production. Postprandial glucose in response to normal meal ingestion was increased in the HF/HS group within 2 weeks, and its elevation gradually returned close to that of the control group until day 50. Slower postprandial gastric emptying was observed in the HF/HS group on days 6, 13 and 34. Postprandial GLP-1 and insulin responses were increased in the HF/HS group at 7 weeks. Higher portal GLP-1 and insulin levels were observed in the HF/HS group, but mucosal gut hormone mRNA levels were unchanged. These results revealed that the postprandial GLP-1 response to meal ingestion is enhanced during the progression of diet-induced glucose intolerance and obesity in rats. The boosted postprandial GLP-1 secretion by chronic HF/HS diet treatment suggests increased sensitivity to luminal nutrients in the gut, and this may slow the establishment of glucose intolerance and obesity.[Abstract] [Full Text] [Related] [New Search]