These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Hsp90, Hsp60 and sHsp families of heat shock protein genes in channel catfish and their expression after bacterial infections.
    Author: Xie Y, Song L, Weng Z, Liu S, Liu Z.
    Journal: Fish Shellfish Immunol; 2015 Jun; 44(2):642-51. PubMed ID: 25827625.
    Abstract:
    Heat shock proteins (Hsps) are a suite of highly conserved proteins whose expressions are generally induced by elevated temperature. However, many Hsps play important roles in both innate and adaptive immunity. On the basis of our previous work on Hsp40 and Hsp70 gene families in channel catfish (Ictalurus punctatus), the objective of this study was to characterize Hsp90, Hsp60, Hsp10, and small Hsp genes, and to investigate their expression profiles after bacterial infections. A total of 20 Hsp genes were identified and annotated in the channel catfish genome, including five Hsp90 genes, one Hsp60 gene, one Hsp10 gene, and 13 sHsp genes. Six Hsp genes were differentially expressed after Edwardsiella ictaluri infection, and 12 were differentially expressed after Flavobacterium columnare infection. Although expression of these genes exhibited both temporal and spatial regulation, the induction of Hsp genes was observed soon after bacterial infection, while the suppression of Hsp genes was observed at later time-points, suggesting their distinct roles in immune responses and disease defenses. A pathogen-specific expression pattern of Hsp90 was observed. After F. columnare infection, all Hsp90 genes were found up-regulated except Hsp90ab1, which was not significantly regulated. However, after E. ictaluri infection, only one Hsp90 gene was found significantly down-regulated. Both pathogen-specific and tissue-specific pattern of expression were observed with small Hsps after E. ictaluri and F. columnare bacterial infections. These results suggested that most of Hsp genes may play important roles in immune response and/or disease defense in channel catfish.
    [Abstract] [Full Text] [Related] [New Search]