These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: New insights into an RNAi approach for plant defence against piercing-sucking and stem-borer insect pests.
    Author: Li H, Guan R, Guo H, Miao X.
    Journal: Plant Cell Environ; 2015 Nov; 38(11):2277-85. PubMed ID: 25828885.
    Abstract:
    Insect double-stranded (ds)RNA expression in transgenic crops can increase plant resistance to biotic stress; however, creating transgenic crops to defend against every insect pest is impractical. Arabidopsis Mob1A is required for organ growth and reproduction. When Arabidopsis roots were soaked in dsMob1A, the root lengths and numbers were significantly suppressed and plants could not bolt or flower. Twenty-four hours after rice roots were immersed in fluorescent-labelled dsEYFP (enhanced yellow fluorescent protein), fluorescence was observed in the rice sheath and stem and in planthoppers feeding on the rice. The expression levels of Ago and Dicer in rice and planthoppers were induced by dsEYFP. When rice roots were soaked in dsActin, their growth was also significantly suppressed. When planthoppers or Asian corn borers fed on rice or maize that had been irrigated with a solution containing the dsRNA of an insect target gene, the insect's mortality rate increased significantly. Our results demonstrate that dsRNAs can be absorbed by crop roots, trigger plant and insect RNAi and enhance piercing-sucking and stem-borer insect mortality rates. We also confirmed that dsRNA was stable under outdoor conditions. These results indicate that the root dsRNA soaking can be used as a bioinsecticide strategy during crop irrigation.
    [Abstract] [Full Text] [Related] [New Search]