These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Impact of chain length on antibacterial activity and hemocompatibility of quaternary N-alkyl and n,n-dialkyl chitosan derivatives.
    Author: Sahariah P, Benediktssdóttir BE, Hjálmarsdóttir MÁ, Sigurjonsson OE, Sørensen KK, Thygesen MB, Jensen KJ, Másson M.
    Journal: Biomacromolecules; 2015 May 11; 16(5):1449-60. PubMed ID: 25830631.
    Abstract:
    A highly efficient method for chemical modification of chitosan biopolymers by reductive amination to yield N,N-dialkyl chitosan derivatives was developed. The use of 3,6-O-di-tert-butyldimethylsilylchitosan as a precursor enabled the first 100% disubstitution of the amino groups with long alkyl chains. The corresponding mono N-alkyl derivatives were also synthesized, and all the alkyl compounds were then quaternized using an optimized procedure. These well-defined derivatives were studied for antibacterial activity against Gram positive S. aureus, E. faecalis, and Gram negative E. coli, P. aeruginosa, which could be correlated to the length of the alkyl chain, but the order was dependent on the bacterial strain. Toxicity against human red blood cells and human epithelial Caco-2 cells was found to be proportional to the length of the alkyl chain. The most active chitosan derivatives were found to be more selective for killing bacteria than the quaternary ammonium disinfectants cetylpyridinium chloride and benzalkonium chloride, as well as the antimicrobial peptides melittin and LL-37.
    [Abstract] [Full Text] [Related] [New Search]