These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Endothelial PAS domain-containing protein 1 confers TKI-resistance by mediating EGFR and MET pathways in non-small cell lung cancer cells. Author: Zhen Q, Liu JF, Liu JB, Wang RF, Chu WW, Zhang YX, Tan GL, Zhao XJ, Lv BL. Journal: Cancer Biol Ther; 2015; 16(4):549-57. PubMed ID: 25831463. Abstract: Mutations in epidermal growth factor receptor (EGFR) rendering it constitutively active is one of the major causes for metastatic non-small-cell lung cancer (NSCLC), and EGFR-targeted therapies utilizing tyrosine kinase inhibitors (TKIs) are often used clinically as the first-line treatment. But approximately half of NSCLC patients develop resistance to these therapies, where the MET proto-oncogene is amplified by EGFR through the hypoxia-inducible factor (HIF)-1α. Here we report that endothelial PAS domain-containing protein 1 (EPAS1), with 48% sequence identity to HIF-1α, specifically binds to TKI-resistant T790M EGFR, but not to wild-type EGFR, in NSCLC cell lines. Expression of EPAS1 enhances amplification of MET when simultaneously expressed with T790M EGFR but not with wild-type EGFR, and this enhancement is independent of ligand binding domain of EGFR. MET amplification requires EPAS1, since EPAS1 knock-down reduced MET levels. When NSCLC cells expressing T790M EGFR were treated with TKIs, reduced EPAS1 levels significantly enhanced the drug effect, whereas over-expression of EPAS1 increased the drug resistant effect. This EPAS1-dependent TKI-resistance was abolished by knocking-down MET, suggesting that EPAS1 does not cause TKI-resistance itself but functions to bridge EGFR and MET interactions. Our findings suggest that EPAS1 is a key factor in the EGFR-MET crosstalk in conferring TKI-resistance in NSCLC cases, and could be used as a potential therapeutic target in TKI-resistant NSCLC patients.[Abstract] [Full Text] [Related] [New Search]