These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Berezinskii-Kosterlitz-Thouless phase transition in 2D spin-orbit-coupled Fulde-Ferrell superfluids. Author: Xu Y, Zhang C. Journal: Phys Rev Lett; 2015 Mar 20; 114(11):110401. PubMed ID: 25839244. Abstract: The experimental observation of traditional Zeeman-field induced Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) superfluids has been hindered by various challenges, in particular, the requirement of low dimensional systems. In 2D, finite temperature phase fluctuations lead to an extremely small Berezinskii-Kosterlitz-Thouless (BKT) transition temperature for FFLO superfluids, raising serious concerns regarding their experimental observability. Recently, it was shown that FFLO superfluids can be realized using a Rashba spin-orbit coupled Fermi gas subject to Zeeman fields, which may also support topological excitations such as Majorana fermions in 2D. Here we address the finite temperature BKT transition issue in this system, which may exhibit gapped, gapless, topological, and gapless topological FF phases. We find a large BKT transition temperature due to large effective superfluid densities, making it possible to observe 2D FF superfluids at finite temperature. In addition, we show that gapless FF superfluids can be stable due to their positive superfluid densities. These findings pave the way for the experimental observation of 2D gapped and gapless FF superfluids and their associated topological excitations at finite temperature.[Abstract] [Full Text] [Related] [New Search]