These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: PET of c-Met in Cancer with ⁶⁴Cu-Labeled Hepatocyte Growth Factor.
    Author: Luo H, Hong H, Slater MR, Graves SA, Shi S, Yang Y, Nickles RJ, Fan F, Cai W.
    Journal: J Nucl Med; 2015 May; 56(5):758-63. PubMed ID: 25840981.
    Abstract:
    UNLABELLED: The hepatocyte growth factor (HGF) and its receptor, c-Met, are actively involved in tumor progression and metastasis and are closely associated with a poor prognostic outcome for cancer patients. Thus, the development of PET agents that can assess c-Met expression would be extremely useful for diagnosing cancer and subsequently monitoring response to c-Met-targeted therapies. Here, we report the characterization of recombinant human HGF (rh-HGF) as a PET tracer for detection of c-Met expression in vivo. METHODS: rh-HGF was expressed in human embryonic kidney 293 cells and purified by nickel-nitrilotriacetic acid affinity chromatography. The concentrated rh-HGF was conjugated to 2-S-(4-isothiocyanatobenzyl)-1,4,7-triazacyclononane-1,4,7-triacetic acid and labeled with (64)Cu. c-Met binding evaluation by flow cytometry was performed on both U87MG and MDA-MB-231 cell lines, which have a high level and a low level, respectively, of c-Met. PET imaging and biodistribution studies were performed on nude mice bearing U87MG and MDA-MB-231 xenografted tumors. RESULTS: The rh-HGF expression yield was 150-200 μg of protein per 5 × 10(6) cells after a 48-h transfection, with purity of approximately 85%-90%. Flow cytometry examination confirmed that rh-HGF had a strong and specific capacity to bind to c-Met. After (64)Cu labeling, PET imaging revealed specific and prominent uptake of (64)Cu-NOTA-rh-HGF in c-Met-positive U87MG tumors (percentage injected dose per gram, 6.8 ± 1.8 at 9 h after injection) and significantly lower uptake in c-Met-negative MDA-MB-231 tumors (percentage injected dose per gram, 1.8 ± 0.6 at 9 h after injection). The fact that sonication-denatured rh-HGF had significantly lower uptake in U87MG tumors, along with histology analysis, confirmed the c-Met specificity of (64)Cu-NOTA-rh-HGF. CONCLUSION: This study provided initial evidence that (64)Cu-NOTA-rh-HGF visualizes c-Met expression in vivo, an application that may prove useful for c-Met-targeted cancer therapy.
    [Abstract] [Full Text] [Related] [New Search]