These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Quantitative X-ray Diffraction (QXRD) analysis for revealing thermal transformations of red mud. Author: Liao CZ, Zeng L, Shih K. Journal: Chemosphere; 2015 Jul; 131():171-7. PubMed ID: 25841072. Abstract: Red mud is a worldwide environmental problem, and many authorities are trying to find an economic solution for its beneficial application or/and safe disposal. Ceramic production is one of the potential waste-to-resource strategies for using red mud as a raw material. Before implementing such a strategy, an unambiguous understanding of the reaction behavior of red mud under thermal conditions is essential. In this study, the phase compositions and transformation processes were revealed for the Pingguo red mud (PRM) heat-treated at different sintering temperatures. Hematite, perovskite, andradite, cancrinite, kaolinite, diaspore, gibbsite and calcite phases were observed in the samples. However, unlike those red mud samples from the other regions, no TiO2 (rutile or anatase) or quartz were observed. Titanium was found to exist mainly in perovskite and andradite while the iron mainly existed in hematite and andradite. A new silico-ferrite of calcium and aluminum (SFCA) phase was found in samples treated at temperatures above 1100°C, and two possible formation pathways for SFCA were suggested. This is the first SFCA phase to be reported in thermally treated red mud, and this finding may turn PRM waste into a material resource for the iron-making industry. Titanium was found to be enriched in the perovskite phase after 1200°C thermal treatment, and this observation indicated a potential strategy for the recovery of titanium from PRM. In addition to noting these various resource recovery opportunities, this is also the first study to quantitatively summarize the reaction details of PRM phase transformations at various temperatures.[Abstract] [Full Text] [Related] [New Search]