These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: ADHD severity is associated with white matter microstructure in the subgenual cingulum.
    Author: Cooper M, Thapar A, Jones DK.
    Journal: Neuroimage Clin; 2015; 7():653-60. PubMed ID: 25844319.
    Abstract:
    AIMS: This analysis examined hypothesised associations between microstructural attributes in specific white matter (WM) tracts selected a priori and measures of clinical variability in adolescents with a diagnosis of attention deficit hyperactivity disorder (ADHD). Firstly, associations were explored between WM microstructure and ADHD severity in the subgenual cingulum. Secondly, to ensure that tract-specific approaches afforded enhanced rather than differential sensitivity, associations were measured between WM microstructure and autistic traits in the right corticospinal tract based on results of a previously-published voxelwise analysis. METHODS: 40 right-handed males aged 14-18 years (19 with DSM-IV combined type ADHD and 21 healthy controls) underwent a 60 direction diffusion MRI scan. Clinical ADHD and autism variation were assessed by validated questionnaires. Deterministic tractography based on spherical deconvolution methods was used to map the subgenual cingulum and corticospinal tract. RESULTS: Fractional anisotropy was positively correlated and radial diffusivity was negatively correlated with a) ADHD severity in the left subgenual cingulum and b) autistic traits in the inferior segment of the right corticospinal tract. No case-control differences were found. CONCLUSIONS: Results shed light on possible anatomical correlates of ADHD severity and autistic symptoms in pathways which may be involved in the ADHD phenotype. They provide further evidence that tract-specific approaches may a) reveal associations between microstructural metrics and indices of phenotypic variability which would not be detected using voxelwise approaches, and b) provide improved rather than differential sensitivity compared to voxelwise approaches.
    [Abstract] [Full Text] [Related] [New Search]