These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Inactivation of Mandelate Racemase by 3-Hydroxypyruvate Reveals a Potential Mechanistic Link between Enzyme Superfamilies.
    Author: Nagar M, Wyatt BN, St Maurice M, Bearne SL.
    Journal: Biochemistry; 2015 May 05; 54(17):2747-57. PubMed ID: 25844917.
    Abstract:
    Mandelate racemase (MR), a member of the enolase superfamily, catalyzes the Mg(2+)-dependent interconversion of the enantiomers of mandelate. Several α-keto acids are modest competitive inhibitors of MR [e.g., mesoxalate (Ki = 1.8 ± 0.3 mM) and 3-fluoropyruvate (Ki = 1.3 ± 0.1 mM)], but, surprisingly, 3-hydroxypyruvate (3-HP) is an irreversible, time-dependent inhibitor (kinact/KI = 83 ± 8 M(-1) s(-1)). Protection from inactivation by the competitive inhibitor benzohydroxamate, trypsinolysis and electrospray ionization tandem mass spectrometry analyses, and X-ray crystallographic studies reveal that 3-HP undergoes Schiff-base formation with Lys 166 at the active site, followed by formation of an aldehyde/enol(ate) adduct. Such a reaction is unprecedented in the enolase superfamily and may be a relic of an activity possessed by a promiscuous progenitor enzyme. The ability of MR to form and deprotonate a Schiff-base intermediate furnishes a previously unrecognized mechanistic link to other α/β-barrel enzymes utilizing Schiff-base chemistry and is in accord with the sequence- and structure-based hypothesis that members of the metal-dependent enolase superfamily and the Schiff-base-forming N-acetylneuraminate lyase superfamily and aldolases share a common ancestor.
    [Abstract] [Full Text] [Related] [New Search]