These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Dietary nitrate improves sprint performance and cognitive function during prolonged intermittent exercise.
    Author: Thompson C, Wylie LJ, Fulford J, Kelly J, Black MI, McDonagh ST, Jeukendrup AE, Vanhatalo A, Jones AM.
    Journal: Eur J Appl Physiol; 2015 Sep; 115(9):1825-34. PubMed ID: 25846114.
    Abstract:
    UNLABELLED: It is possible that dietary nitrate (NO3 (-)) supplementation may improve both physical and cognitive performance via its influence on blood flow and cellular energetics. PURPOSE: To investigate the effects of dietary NO3 (-) supplementation on exercise performance and cognitive function during a prolonged intermittent sprint test (IST) protocol, which was designed to reflect typical work patterns during team sports. METHODS: In a double-blind randomised crossover study, 16 male team-sport players received NO3 (-)-rich (BR; 140 mL day(-1); 12.8 mmol of NO3 (-)), and NO3 (-)-depleted (PL; 140 mL day(-1); 0.08 mmol NO3 (-)) beetroot juice for 7 days. On day 7 of supplementation, subjects completed the IST (two 40-min "halves" of repeated 2-min blocks consisting of a 6-s "all-out" sprint, 100-s active recovery and 20 s of rest), on a cycle ergometer during which cognitive tasks were simultaneously performed. RESULTS: Total work done during the sprints of the IST was greater in BR (123 ± 19 kJ) compared to PL (119 ± 17 kJ; P < 0.05). Reaction time of response to the cognitive tasks in the second half of the IST was improved in BR compared to PL (BR first half: 820 ± 96 vs. second half: 817 ± 86 ms; PL first half: 824 ± 114 vs. second half: 847 ± 118 ms; P < 0.05). There was no difference in response accuracy. CONCLUSIONS: These findings suggest that dietary NO3 (-) enhances repeated sprint performance and may attenuate the decline in cognitive function (and specifically reaction time) that may occur during prolonged intermittent exercise.
    [Abstract] [Full Text] [Related] [New Search]