These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Mesoporous Ni0.85Se Nanospheres Grown in Situ on Graphene with High Performance in Dye-Sensitized Solar Cells. Author: Zhang X, Yang Y, Guo S, Hu F, Liu L. Journal: ACS Appl Mater Interfaces; 2015 Apr 29; 7(16):8457-64. PubMed ID: 25850447. Abstract: Mesoporous Ni0.85Se nanospheres grown on graphene were synthesized via the hydrothermal approach. Because of the exceptional electron-transfer pathway of graphene and the excellent catalytic ability of the mesoporous Ni0.85Se nanospheres, the nanocomposites exhibited excellent electrocatalytic property as the counter electrode (CE) of dye-sensitized solar cells. More catalytic active sites, better charge-transfer ability and faster reaction velocity of Ni0.85Se@RGO (RGO = reduced graphene oxide) CE led to faster and more complete I3(-) reduction than Pt, Ni0.85Se, and RGO CEs. Furthermore, the power conversion efficiency of Ni0.85Se@RGO CE reached 7.82%, which is higher than that of Pt CE (7.54%). Electrochemical impedance spectra, cyclic voltammetry, and Tafel polarization were obtained to demonstrate positive synergetic effect between Ni0.85Se and RGO, as well as the higher catalytic activity and the better charge-transfer ability of Ni0.85Se@RGO compared with Pt CE.[Abstract] [Full Text] [Related] [New Search]