These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Concordant dysregulation of miR-5p and miR-3p arms of the same precursor microRNA may be a mechanism in inducing cell proliferation and tumorigenesis: a lung cancer study. Author: Mitra R, Lin CC, Eischen CM, Bandyopadhyay S, Zhao Z. Journal: RNA; 2015 Jun; 21(6):1055-65. PubMed ID: 25852169. Abstract: A precursor microRNA (miRNA) has two arms: miR-5p and miR-3p (miR-5p/-3p). Depending on the tissue or cell types, both arms can become functional. However, little is known about their coregulatory mechanisms during the tumorigenic process. Here, by using the large-scale miRNA expression profiles of five cancer types, we revealed that several of miR-5p/-3p arms were concordantly dysregulated in each cancer. To explore possible coregulatory mechanisms of concordantly dysregulated miR-5p/-3p pairs, we developed a robust computational framework and applied it to lung cancer data. The framework deciphers miR-5p/-3p coregulated protein interaction networks critical to lung cancer development. As a novel part in the method, we uniquely applied the second-order partial correlation to minimize false-positive regulations. Using 279 matched miRNA and mRNA expression profiles extracted from tumor and normal lung tissue samples, we identified 17 aberrantly expressed miR-5p/-3p pairs that potentially modulate the gene expression of 35 protein complexes. Functional analyses revealed that these complexes are associated with cancer-related biological processes, suggesting the oncogenic potential of the reported miR-5p/-3p pairs. Specifically, we revealed that the reduced expression of miR-145-5p/-3p pair potentially contributes to elevated expression of genes in the "FOXM1 transcription factor network" pathway, which may consequently lead to uncontrolled cell proliferation. Subsequently, the regulation of miR-145-5p/-3p in the FOXM1signaling pathway was validated by a cohort of 104 matched miRNA and protein (reverse-phase protein array) expression profiles in lung cancer. In summary, our computational framework provides a novel tool to study miR-5p/-3p coregulatory mechanisms in cancer and other diseases.[Abstract] [Full Text] [Related] [New Search]