These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Dual-gated topological insulator thin-film device for efficient Fermi-level tuning. Author: Yang F, Taskin AA, Sasaki S, Segawa K, Ohno Y, Matsumoto K, Ando Y. Journal: ACS Nano; 2015 Apr 28; 9(4):4050-5. PubMed ID: 25853220. Abstract: Observations of novel quantum phenomena expected for three-dimensional topological insulators (TIs) often require fabrications of thin-film devices and tuning of the Fermi level across the Dirac point. Since thin films have both top and bottom surfaces, an effective control of the surface chemical potential requires dual gating. However, a reliable dual-gating technique for TI thin films has not yet been developed. Here we report a comprehensive method to fabricate a dual-gated TI device and demonstrate tuning of the chemical potential of both surfaces across the Dirac points. The most important part of our method is the recipe for safely detaching high-quality, bulk-insulating (Bi(1-x)Sb(x))2Te3 thin films from sapphire substrates and transferring them to Si/SiO2 wafers that allow back gating. Fabrication of an efficient top gate by low-temperature deposition of a SiN(x) dielectric complements the procedure. Our dual-gated devices are shown to be effective in tuning the chemical potential in a wide range encompassing the Dirac points on both surfaces.[Abstract] [Full Text] [Related] [New Search]