These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Coupling between Pentachlorophenol Dechlorination and Soil Redox As Revealed by Stable Carbon Isotope, Microbial Community Structure, and Biogeochemical Data. Author: Xu Y, He Y, Zhang Q, Xu J, Crowley D. Journal: Environ Sci Technol; 2015 May 05; 49(9):5425-33. PubMed ID: 25853431. Abstract: Carbon isotopic analysis and molecular-based methods were used in conjunction with geochemical data sets to assess the dechlorination of pentachlorophenol (PCP) when coupled to biogeochemical processes in a mangrove soil having no prior history of anthropogenic contamination. The PCP underwent 96% dechlorination in soil amended with acetate, compared to 21% dehalogenation in control soil. Carbon isotope analysis of residual PCP demonstrated an obvious enrichment of 13C (εC, -3.01±0.1%). Molecular and statistical analyses demonstrated that PCP dechlorination and Fe(III) reduction were synergistically combined electron-accepting processes. Microbial community analysis further suggested that enhanced dechlorination of PCP during Fe(III) reduction was mediated by members of the multifunctional family of Geobacteraceae. In contrast, PCP significantly suppressed the growth of SO4(2-) reducers, which, in turn, facilitated the production of CH4 by diversion of electrons from SO4(2-) reduction to methanogenesis. The integrated data regarding stoichiometric alterations in this study gives direct evidence showing PCP, Fe(III), and SO4(2-) reduction, and CH4 production are coupled microbial processes during changes in soil redox.[Abstract] [Full Text] [Related] [New Search]