These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Protic-salt-derived nitrogen/sulfur-codoped mesoporous carbon for the oxygen reduction reaction and supercapacitors.
    Author: Zhang S, Ikoma A, Ueno K, Chen Z, Dokko K, Watanabe M.
    Journal: ChemSusChem; 2015 May 11; 8(9):1608-17. PubMed ID: 25855218.
    Abstract:
    Nitrogen/sulfur-co-doped mesoporous carbon (Phen-HS) was obtained through direct carbonization of a single protic salt, that is, 1,10-phenanthrolinium dibisulfate ([Phen][2 HSO4 ]), in the presence of a colloidal silica template without the use of additional acid or metal catalysts for prepolymerization prior to carbonization. Phen-HS was prepared in a relatively high yield (30.0 %) and has a large surface area (1161 m(2)  g(-1) ), large pore volume (2.490 cm(3)  g(-1) ), large mesopores (≈12 nm), narrow pore-size distribution (7-16 nm), and high nitrogen (7.5 at %) and sulfur (1.3 at %) contents. The surface area/pore-size distribution is much higher/narrower than that of most reported carbon materials obtained from traditional precursors by using the same template. Phen-HS was directly used as an electrocatalyst for the oxygen reduction reaction (ORR) and as an electrode material for supercapacitors. As an efficient metal-free catalyst, Phen-HS exhibited good electrocatalytic activity toward the ORR in a 0.1 M KOH aqueous solution, which is comparable to the activity of a commercial Pt/C catalyst. Electrochemical measurements for Phen-HS used in a double-layer capacitor showed high specific capacitances of 160 and 140 F g(-1) in 1 M H2 SO4 and 6 M KOH, respectively, with good rate capabilities and high cycling stabilities.
    [Abstract] [Full Text] [Related] [New Search]