These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: No-tillage and fertilization management on crop yields and nitrate leaching in North China Plain.
    Author: Huang M, Liang T, Wang L, Zhou C.
    Journal: Ecol Evol; 2015 Mar; 5(6):1143-55. PubMed ID: 25859321.
    Abstract:
    A field experiment was performed from 2003 to 2008 to evaluate the effects of tillage system and nitrogen management regimes on crop yields and nitrate leaching from the fluvo-aquic soil with a winter wheat (Triticum aestivum L.)-maize (Zea mays L.) double-cropping system. The tillage systems consisted of conventional tillage (CT) and no-tillage (NT). Three nitrogen management regimes were included: 270 kg N ha(-1) of urea for wheat and 225 kg N ha(-1) of urea for maize (U), 180 kg N ha(-1) of urea and 90 kg N ha(-1) of straw for wheat and 180 kg N of urea and 45 kg N ha(-1) of straw for maize (S), 180 kg N ha(-1) of urea and 90 kg N ha(-1) of manure for wheat and 180 kg N ha(-1) of urea and 45 kg N ha(-1) of manure for maize (M). An array of tension-free pan lysimeters (50 cm × 75 cm) were installed (1.2 m deep) to measure water flow and [Formula: see text]-N movement. No significant effect of the N management regime on yields of winter wheat and maize grain was found in the 5-year rotation. Tillage systems had significant influences on [Formula: see text]-N leaching from the second year and thereafter interacted with N management regimes on [Formula: see text]-N loads during all maize seasons. The average yield-scaled [Formula: see text]-N leaching losses were in order of CTS < NTS< CTU < NTU <CTM < NTM, ranging from 0.88 (CTS) to 6.07 (NTM) kg N Mg(-1) for winter wheat system and from 0.99 (CTS) to 6.27 (NTM) kg N Mg(-1) for summer maize system for 5 rotation years. The results showed that CTS decreased the yield-scaled [Formula: see text]-N leaching losses while sustaining crop grain yields. Considering the lower costs, NTS could be a potential alternative to decrease yield-scaled [Formula: see text]-N leaching losses and improve soil fertility while maintaining crop yield for the winter wheat-maize double-cropping systems in the North China Plain.
    [Abstract] [Full Text] [Related] [New Search]