These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Pentoxifylline enhances the protective effects of hypertonic saline solution on liver ischemia reperfusion injury through inhibition of oxidative stress.
    Author: Rocha-Santos V, Figueira ER, Rocha-Filho JA, Coelho AM, Pinheiro RS, Bacchella T, Machado MC, D'Albuquerque LA.
    Journal: Hepatobiliary Pancreat Dis Int; 2015 Apr; 14(2):194-200. PubMed ID: 25865693.
    Abstract:
    BACKGROUND: Liver ischemia reperfusion (IR) injury triggers a systemic inflammatory response and is the main cause of organ dysfunction and adverse postoperative outcomes after liver surgery. Pentoxifylline (PTX) and hypertonic saline solution (HTS) have been identified to have beneficial effects against IR injury. This study aimed to investigate if the addition of PTX to HTS is superior to HTS alone for the prevention of liver IR injury. METHODS: Male Wistar rats were allocated into three groups. Control rats underwent 60 minutes of partial liver ischemia, HTS rats were treated with 0.4 mL/kg of intravenous 7.5% NaCl 15 minutes before reperfusion, and HPTX group were treated with 7.5% NaCl plus 25 mg/kg of PTX 15 minutes before reperfusion. Samples were collected after reperfusion for determination of ALT, AST, TNF-alpha, IL-6, IL-10, mitochondrial respiration, lipid peroxidation, pulmonary permeability and myeloperoxidase. RESULTS: HPTX significantly decreased TNF-alpha 30 minutes after reperfusion. HPTX and HTS significantly decreased ALT, AST, IL-6, mitochondrial dysfunction and pulmonary myeloperoxidase 4 hours after reperfusion. Compared with HTS only, HPTX significantly decreased hepatic oxidative stress 4 hours after reperfusion and pulmonary permeability 4 and 12 hours after reperfusion. CONCLUSION: This study showed that PTX added the beneficial effects of HTS on liver IR injury through decreases of hepatic oxidative stress and pulmonary permeability.
    [Abstract] [Full Text] [Related] [New Search]