These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: C-Linker Accounts for Differential Sensitivity of ERG1 and ERG2 K+ Channels to RPR260243-Induced Slow Deactivation. Author: Gardner A, Sanguinetti MC. Journal: Mol Pharmacol; 2015 Jul; 88(1):19-28. PubMed ID: 25888115. Abstract: Compounds can activate human ether-à-go-go-related gene 1 (hERG1) channels by several different mechanisms, including a slowing of deactivation, an increase in single channel open probability, or a reduction in C-type inactivation. The first hERG1 activator to be discovered, RPR260243 ((3R,4R)-4-[3-(6-methoxyquinolin-4-yl)-3-oxo-propyl]-1-[3-(2,3,5-trifluorophenyl)-prop-2-ynyl]-piperidine-3-carboxylic acid) (RPR) induces a pronounced, voltage-dependent slowing of hERG1 deactivation. The putative binding site for RPR, previously mapped to a hydrophobic pocket located between two adjacent subunits, is fully conserved in the closely related rat ether-à-go-go-related gene 2 (rERG2), yet these channels are relatively insensitive to RPR. Here, we use site-directed mutagenesis and heterologous expression of channels in Xenopus oocytes to characterize the structural basis for the differential sensitivity of hERG1 and rERG2 channels to RPR. Analysis of hERG1-rERG2 chimeric channels indicated that the structural determinant of channel sensitivity to RPR was located within the cytoplasmic C-terminus. Analysis of a panel of mutant hERG1 and rERG2 channels further revealed that seven residues, five in the C-linker and two in the adjacent region of the cyclic nucleotide-binding homology domain, can fully account for the differential sensitivity of hERG1 and rERG2 channels to RPR. These findings provide further evidence that the C-linker is a key structural component of slow deactivation in ether-à-go-go-related gene channels.[Abstract] [Full Text] [Related] [New Search]