These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: FH535 increases the radiosensitivity and reverses epithelial-to-mesenchymal transition of radioresistant esophageal cancer cell line KYSE-150R. Author: Su H, Jin X, Zhang X, Zhao L, Lin B, Li L, Fei Z, Shen L, Fang Y, Pan H, Xie C. Journal: J Transl Med; 2015 Mar 31; 13():104. PubMed ID: 25888911. Abstract: BACKGROUND: Acquired radioresistance has significantly compromised the efficacy of radiotherapy for esophageal cancer. The purpose of this study is to investigate the roles of epithelial-mesenchymal transition (EMT) and the Wnt/β-catenin signaling pathway in the acquirement of radioresistance during the radiation treatment of esophageal cancer. METHODS: We previously established a radioresistant cell line (KYSE-150R) from the KYSE-150 cell line (a human cell line model for esophageal squamous cell carcinoma) with a gradient cumulative irradiation dose. In this study, the expression of EMT phenotypes and the Wnt/β-catenin signaling pathway proteins were examined by real-time PCR, western blot and immunofluorescence in the KYSE-150R cells. The KYSE-150R cells were then treated with a β-Catenin/Tcf inhibitor FH535. The expressions of nuclear and cytoplasmic β-catenin and EMT markers in KYSE-150R cells were assessed at both mRNA and protein level after FH535 treatment. The radiosensitization effect of FH535 on KYSE-150R was evaluated by CCK8 analysis and a colony forming assay. DNA repair capacities was detected by the neutral comet assays. RESULTS: KYSE-150R cell line displayed obvious radiation resistance and had a stable genetic ability. EMT phenotype was presented in the KYSE-150R cells with decreased E-cadherin and increased snail and twist expressions. The up-regulated expressions of Wnt/β-catenin signaling pathway proteins (Wnt1, FZD1-4, GSK3β, CTNNB1 and Cyclin D1), the increased phosphorylation of GSK3β, and the decreased phosphorylation of β-catenin were observed in KYSE-150R cells compared with KYSE-150 cells, implicating the activation of the Wnt pathway in KYSE-150R cells. The expression of nuclear β-catenin and nuclear translocation of β-catenin from the cytoplasm was decreased after FH535 treatment. FH535 also reversed EMT phenotypes by increasing E-cadherin expression. The cell proliferation rates of KYSE-150R were dose-dependent and the radiation survival fraction was significantly decreased upon FH535 treatment. Neutral comet assays indicated that FH535 impairs DNA double stranded break repair in KYSE-150R cells. CONCLUSIONS: Acquisition of radioresistance and EMT in esophageal cancer cells is associated with the activation of the Wnt/β-catenin pathway. EMT phenotypes can be reduced and the radiosensitivity of esophageal cancer cells can be enhanced by inhibiting the Wnt/β-catenin pathway with FH535 treatment.[Abstract] [Full Text] [Related] [New Search]