These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Dosimetry methods for multi-detector computed tomography. Author: Gancheva M, Dyakov I, Vassileva J, Avramova-Cholakova S, Taseva D. Journal: Radiat Prot Dosimetry; 2015 Jul; 165(1-4):190-3. PubMed ID: 25889607. Abstract: The aim of this study is to compare four dosimetry methods for wide-beam multi-detector computed tomography (MDCT) in terms of computed tomography dose index free in air (CTDI free-in-air) and CTDI measured in phantom (CTDI phantom). The study was performed with Aquilion One 320-detector row CT (Toshiba), Ingenuity 64-detector row CT (Philips) and Aquilion 64 64-detector row CT (Toshiba). In addition to the standard dosimetry, three other dosimetry methods were also applied. The first method, suggested by International Electrotechnical Commission (IEC) for MDCT, includes free-in-air measurements with a standard 100-mm CT pencil ion chamber, stepped through the X-ray beam, along the z-axis, at intervals equal to its sensitive length. Two cases were studied-with an integration length of 200 mm and with a standard polimetil metakrilat (PMMA) dosimetry phantom. The second approach comprised measurements with a twice-longer phantom and two 100-mm chambers positioned and fixed against each other, forming a detection length of 200 mm. As a third method, phantom measurements were performed to study the real-dose profile along z-axis using thermoluminescent detectors. Fabricated PMMA tube of a total length of 300 mm in cylindrical shape containing LiF detectors was used. CTDI free-in-air measured with an integration length of 300 mm for 160 mm wide beam was by 194 % higher than the same quantity measured using the standard method. For an integration length of 200 mm, the difference was 18 % for 40 mm wide beam and 14 % for 32 mm wide beam in comparison with the standard CTDI measurement. For phantom measurements, the IEC method resulted in difference of 41 % for the beam width 160 mm, 19 % for the beam width 40 mm and 18 % for the beam width 32 mm compared with the method for CTDI vol. CTDI values from direct measurement in the phantom central hole with two chambers differ by 20 % from the calculated values by the IEC method. Dose profile for beam widths of 40, 32 and 16 mm, and analysis and conclusions are presented.[Abstract] [Full Text] [Related] [New Search]