These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Molecular imaging to monitor repair of myocardial infarction using genetically engineered bone marrow-derived mesenchymal stem cells. Author: Shi S, Zhang M, Guo R, Miao Y, Zhang X, Li B. Journal: Curr Gene Ther; 2015; 15(5):460-71. PubMed ID: 25892408. Abstract: Heart tissue has a diminished ability to repair after myocardial infarction (MI). Bone marrow- derived mesenchymal stem cells (BMSCs) have been used effectively to heal damaged tissue after MI. Hypoxia-inducible factor-1α (HIF-1α) can induce transcription of numerous pro-angiogenic genes and enhance stem cell survival. Here, we investigated whether HIF-1α-transduced BMSCs could enhance tissue repair after MI, and compared the value of micro-PET/CT and echocardiography for evaluation of therapeutic effects. Rat BMSCs were transduced with a lentivirus expressing HIF-1α and NIS (Lenti-HIF-1α-NIS). Sodium iodide symporter (NIS) functioned as effective reporter gene, allowing monitoring of BMSCs transplanted into the rat heart for up to 2 weeks using micro-SPECT/CT imaging. In a rat MI model, after transplantation of HIF-1α-NIS-transduced BMSCs to the MI zone, more expression of HIF-1α,VEGF and Ang-4, more improvement of metabolism, less fibrotic tissue and cardiomyocyte apoptosis were detected in the MI zone. Moreover, we found that most of the transplanted HIF-1α-NIS-transduced BMSCs differentiated into endothelial cells, and engineered new blood vessels in MI zone. Metabolic activity significantly increased at an early time point (2 weeks after transplantation) and lead to a sustained increase (4 weeks), as indicated by (18)F-FDG uptake in micro-PET/CT imaging. Echocardiography indicated no improvement in cardiac function at 2 weeks and small improvement at 4 weeks. This study indicated that (18)F-FDG micro-PET/CT was more useful for evaluating early therapeutic effects than echocardiography.[Abstract] [Full Text] [Related] [New Search]