These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Physiological Responses of Hard Red Winter Wheat to Infection by Wheat streak mosaic virus. Author: Pradhan GP, Xue Q, Jessup KE, Hao B, Price JA, Rush CM. Journal: Phytopathology; 2015 May; 105(5):621-7. PubMed ID: 25901871. Abstract: Wheat streak mosaic virus (WSMV) causes significant yield loss in hard red winter wheat in the U.S. Southern High Plains. Despite the prevalence of this pathogen, little is known about the physiological response of wheat to WSMV infection. A 2-year study was initiated to (i) investigate the effect of WSMV, inoculated at different development stages, on shoot and root growth, water use, water use efficiency (WUE), and photosynthesis and (ii) understand the relationships between yield and photosynthetic parameters during WSMV infection. Two greenhouse experiments were conducted with two wheat cultivars mechanically inoculated with WSMV at different developmental stages, from three-leaf to booting. WSMV inoculated early, at three- to five-leaf stage, resulted in a significant reduction in shoot biomass, root dry weight, and yield compared with wheat infected at the jointing and booting stages. However, even when inoculated as late as jointing, WSMV still reduced grain yield by at least 53%. Reduced tillers, shoot biomass, root dry weight, water use, and WUE contributed to yield loss under WSMV infection. However, infection by WSMV did not affect rooting depth and the number of seminal roots but reduced the number of nodal roots. Leaf photosynthetic parameters (chlorophyll [SPAD], net photosynthetic rate [Pn], stomatal conductance [Gs], intercellular CO2 concentration [Ci], and transpiration rate [Tr]) were reduced when infected by WSMV, and early infection reduced parameters more than late infection. Photosynthetic parameters had a linear relationship with grain yield and shoot biomass. The reduced Pn under WSMV infection was mainly in response to decreased Gs, Ci, and SPAD. The results of this study indicated that leaf chlorophyll and gas exchange parameters can be used to quantify WSMV effects on biomass and grain yield in wheat.[Abstract] [Full Text] [Related] [New Search]